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a b s t r a c t

The solution for stress, rate of deformation, and vorticity in an incompressible anisotropic viscous
cylindrical inclusion with elliptical cross-section embedded in an incompressible, homogeneous aniso-
tropic viscous medium subjected to a far-field homogeneous rate of deformation is presented. The rate of
rotation of a single rigid elliptical inclusion is independent of the ratio of the principal viscosity in
‘‘foliation-parallel’’ shortening or extension to that in foliation-parallel shear, m¼ hn/hs, and is hence
given by the well-known result for the isotropic medium. An analytical expression shows that a thin,
very weak elliptical inclusion rotates as though it were a material line in a homogeneous medium
[Kocher, T., Mancktelow, N.S., 2005. Dynamic reverse modeling of flanking structures: a source of
quantitative kinematic information. Journal of Structural Geology 27, 1346–1354; Kocher, T., Mancktelow,
N.S., 2006. Flanking structure development in anisotropic viscous rock. Journal of Structural Geology 28,
1139–1145]. The sense of slip and slip rate across such an inclusion depends on m. The behavior of an
isotropic inclusion with viscosity h*in a medium deforming in simple shear parallel to its foliation plane,
depends on m and R¼ h*/hn; R is the quantity of the same name in Bilby and Kolbuszewski [Bilby, B.A.,
Kolbuszewski, M.L., 1977. The finite deformation of an inhomogeneity in two-dimensional slow viscous
incompressible flow. Proceedings of the Royal Society of London Series A – Mathematical and Physical
Sciences 355, 335–353] when the host is isotropic, m¼ 1. R and m determine ranges of qualitatively
different behavior in a finite shearing deformation. For mR¼ h*/hs< 2, all inclusions, irrespective of initial
aspect ratio and orientation, are stretched to indefinitely large values and their long axis approaches the
shear plane. For mR> 2, depending on initial aspect ratio, a/b, and orientation to the shear plane, f, the
inclusions may either undergo periodic motion or asymptotically approach the shear plane as a/b / N.
In the former case, a stationary point in f, a/b – phase space occurs at f¼ 0 and
ða=bÞC ¼ ð

ffiffiffiffiffi
m
p
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðmR� 2Þ þ 1

p
Þ=ðmR� 2Þ� . Initial values in the rather broad vicinity of this point

undergo periodic motion. For R> R1, where m0:8R1 ¼ ½ðh*Þ5=hnh4
s �

1=5y3:40, by fit to numerically
determined values, all initial pairs of f and a/b lead to periodic motion, which may either be a full
rotation about the shear plane or an oscillation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Inclusions isolated or dispersed in a homogeneous rock volume,
may be used to estimate strain, kinematics of flow, stress magni-
tude, or rheological parameters (Simpson and Schmid, 1983; Lisle
et al., 1983; Kanagawa, 1993; Mancktelow et al., 2002; Schmid and
Podlachikov, 2003; Kocher and Mancktelow, 2005; Treagus and
Lan, 2000). Deformable inclusions have been used in models of
clasts in conglomerates (Treagus and Treagus, 2001; Treagus, 2002;
ennsylvania State University,
: þ1 303 492 2606.

All rights reserved.
Fletcher, 2004). Rigid inclusions have been used to model pheno-
cryst behavior, especially in shear zones (Schmid and Podlachikov,
2003). The behavior of, and deformation around, thin, very weak
inclusions has been used to model flanking structures (Grasemann
et al., 2003; Exner et al., 2004; Kocher and Mancktelow, 2005,
2006). Since these and similar objects often occur in rock whose
well-developed fabrics suggest rheological anisotropy, the behavior
of such inclusions in an anisotropic medium is of interest. The
solution might also be applied to large-scale inclusions in shear
zones (Bellot, 2008) or to continental-scale inhomogeneity (Tom-
masi and Vauchez, 1997).

Here, I correct typographical errors and simplify the solution
from Fletcher (2004) for a deformable elliptical inclusion
embedded in a homogeneous anisotropic medium undergoing
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Fig. 1. Elliptical cross-section of cylindrical inclusion and coordinate systems with
respect to inclusion shape and viscous anisotropy of the host material.
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homogeneous far-field deformation. This solution requires that the
host and inclusion be homogeneous. When foliation is deflected
around the inclusion as in a finite deformation, it provides only an
approximation. The homogeneous components of stress, rate of
deformation, and vorticity in the inclusion are given, and are used
to illustrate inclusion behavior for rotation of a single rigid inclu-
sion in an anisotropic medium, for an inviscid inclusion, and for
a deformable isotropic inclusion in foliation-parallel simple shear.
The last extends results of Bilby and Kolbuszewski (1977) and
Mulchrone and Walsh (2006) for the isotropic matrix.

Solutions for the anisotropic elastic host have been given in the
engineering mechanics literature (e.g., Hufenbach and Zhou, 2001;
Bhargava and Saxena, 1975; Gao, 1992; Podil’chik, 1997; Rahman,
2002; Ru, 2003). These are not readily compared with the present
solution for an anisotropic, incompressible viscous host. Mandal
et al. (2005) obtain a result for the infinitesimal rotation of a rigid
elliptical inclusion in an anisotropic compressible elastic medium.

2. Amended solution from Fletcher (2004)

The solution for the homogeneous stress components and
vorticity in a homogeneous anisotropic elliptical inclusion
embedded in a homogeneous anisotropic, incompressible viscous
fluid is given in the appendix of Fletcher (2004). This solution is
derived from the elastic solution for an incompressible elastic host.
Rate of deformation and velocity in the viscous problem are replaced
by strain and displacement in the elastic problem. Incompressibility
results in symmetry that markedly simplifies the development. A
lucid development of the solution for an elliptical cavity in an elastic
medium is given by Lekhnitskii (1963, Chapter 3). The inclusion
solution is then obtained using the method of Eshelby (1957), and
the combined treatment for an application involving a compressible
elastic host and inclusion was derived by Fletcher (1968).

Lekhnitskii’s expressions for the plane-strain elastic compli-
ances, bij, are used in the present viscous problem to facilitate
comparison with his treatment. To illustrate, the expression for
a normal component of strain for an isotropic elastic material
undergoing plane deformation is:

3xx ¼
ð1þ vPÞ

E
sxx �

vPð1þ vPÞ
E

syy ¼ b
ðelÞ
11 sxx þ b

ðelÞ
12 syy (1)

where E is Young’s Modulus, nP is Poisson’s Ratio, and (el) is used to
denote an elastic compliance. For an anisotropic viscous fluid,
relations of form (1) are written between the rate of deformation
and stress components, and coefficients bij are used. Rate of
deformation components for plane flow in the host (Dij) referred to
coordinate axes that coincide with the principal axes of the ellip-
tical cross-section of the inclusion (Fig. 1), in which the solution is
developed, are given by:

Dxx ¼ b11sxx þ b12syy þ b16sxy
Dyy ¼ b12sxx þ b22syy þ b26sxy
2Dxy ¼ b16sxx þ b26syy þ b66sxy

(2)

where:

Dxx ¼
vvx

vx

Dyy ¼
vvy

vy

Dxy ¼ 1
2

�
vvy

vx
þ vvx

vy

�

u ¼ 1
2

�
vvy

vx
� vvx

vy

�
(3)
where vx and vy are the components of velocity, and u is the
vorticity. Incompressibility requires that the sum of the normal
components of the rate of deformation vanish, giving:

b22 ¼ �b12 ¼ b11
b26 ¼ �b16

(4)

The bij may be expressed in terms of the principal viscosities of the host
material and the angle that the principal axes of the inclusion makes
with the reference principal axes of anisotropy x; y in the host (Fig. 1).
We may think of the host as a gneiss or schist, with a sub-planar
foliation. The viscosity in foliation-parallel shortening or extension is
denoted hn, while that in foliation-parallel shear is denoted hs. The
ratio m¼ hn/hs� 1 specifies the strength of anisotropy; Treagus (2002)
terms m the anisotropy factor (her d). If f is the angle between the
foliation and the orientation of the inclusion axis (Fig. 1):

b11 ¼
½ðmþ 1Þ � ðm� 1Þcos 4f�

8hn

b66 ¼
½ðmþ 1Þ þ ðm� 1Þcos 4f�

2hn

b16 ¼
ðm� 1Þsin 4f

4hn

(5)

The solution derived by Lekhnitskii (1963), and used in Fletcher
(2004), is for the additional inhomogeneous stress and velocity
fields that mediate between the homogeneous inclusion states of
stress, rate of deformation, and vorticity and their equivalents in
the far-field. Consequently, the far-field rate of deformation
components, indexed with ‘‘o’’, are:

Do
xx ¼ 2b11so

xx þ b16so
xy

Do
yy ¼ �2b11so

xx � b16so
xy

Do
xy ¼ b16so

xx þ
b66
2 so

xy

(6)

where:

sxx ¼ 1
2

�
sxx � syy

�
sxy ¼ sxy

(7)

where sxx, syy, and sxy are the components of stress. The inclusion
rate of deformation components, indexed with *, are:

D*
xx ¼ 2b*

11s*
xx þ b*

16s*
xy

D*
yy ¼ �2b*

11s*
xx � b*

16s*
xy

D*
xy ¼ b*

16s*
xx þ

b
*
66
2 s*

xy

(8)

The solution for the stress components and vorticity in an
anisotropic viscous inclusion, with constitutive relations (8)
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embedded in a homogenous matrix with relations (6) is
obtained from the algebraic equations (A7) in the appendix of
Fletcher (2004), but these contain several typographical errors.
Further, a marked condensation of these equations may be
made, using relations I later found for an incompressible
medium:

ða1 þ a2Þb11 � b16 ¼ 0

ðb1 þ b2Þb11 ¼
ffiffiffiffi
m
p

2hn

(9)

where the quantities a1, a2, b1, b2 are the real and imaginary parts of
the roots of the characteristic equation for the 4th-order partial
differential equation in the stress function for the case of an
anisotropic medium, equivalent in the isotropic case to the bihar-
monic equation (Lekhnitskii, 1963, p. 136). The orientation of the
principal axes of anisotropy with respect to the inclusion axes in
either host or inclusion may be arbitrary. With the simplification
afforded by (9), the velocity boundary conditions (Fletcher, 2004,
equation A7) then become:

s* � so ¼ ða
2�b2Þ
ða2þb2Þ

�
s*

xx � so
xx
�

u* ¼ uo þ
�a

b
� b

a

�
m

4hn

�
s*

xy � so
xy

�
h

m
hn
þ 4vb*

11

i
s*

xx þ 2vb*
16s*

xy ¼
h

m
hn
þ 4vb11

i
so

xx þ 2vb16so
xy

2b*
16s*

xx þ
�

v m
hn
þ b*

66

�
s*

xy ¼ 2b16so
xx þ

�
v m

hn
þ b66

�
so

xy

(10)

where:

v ¼ 1
2

�a
b
þ b

a

�
s ¼ 1

2

�
sxx þ syy

� (11)

The far-field rate of deformation components may be substituted
for the stress components, using (6). Specification of the current
state of flow is general, since arbitrary values of rate of deformation
components, Dxx;Dxy referred to the principal axes of anisotropy,
may be specified, and:

Do
xx ¼ Dxx cos 2fþDxy sin 2f

Do
xy ¼ �Dxx sin 2fþDxy cos 2f

so
xx ¼ sxx cos 2fþ sxy sin 2f ¼ 2hn

�
Dxx cos 2fþDxy

m sin 2f
�

so
xy ¼ �sxx sin 2fþ sxy cos 2f ¼ 2hn

�
�Dxx sin 2fþDxy

m cos 2f
�
(12)

For a deformable, isotropic inclusion of viscosity h*:

b*
11 ¼ 1

4h*

b*
16 ¼ 0

b*
66 ¼ 1

h*

(13)

Solving (10) for this case, we obtain the inclusion vorticity

u* ¼ uo þ 1
2

�
a
b
� b

a

�� ffiffiffiffiffi
m
p

R
Rv

ffiffiffiffiffi
m
p
þ 1

�	�
� Dxx sin 2fþ Dxy cos 2f

�

� 1
R

�
� Dxx sin 2fþ Dxy

m
cos 2f

�

(14)

where R ¼ h*=hn, and the rate of deformation components:
D*
xx ¼

v� ffiffiffiffiffip �	�Dxx cos 2fþ Dxy sin 2f
�

R mþ v

þ
ffiffiffiffiffi
m
p �

Dxx cos 2fþ Dxy sin 2f

�


v m

D*
xy ¼

1� ffiffiffiffiffip �	�� Dxx sin 2fþ Dxy cos 2f
�

Rv mþ 1

þv
ffiffiffiffiffi
m
p �

� Dxx cos 2fþ Dxy cos 2f

�

(15)
m

3. Finite deformation

While numerical modeling of flow in an anisotropic incom-
pressible viscous fluid has been done (e.g., Kocher and Mancktelow,
2006; Pettit et al., 2007), consideration of finite inclusion defor-
mation in such a fluid is useful geologically. During the continued
deformation of an inclusion embedded in an anisotropic medium,
internal structure develops by deformation of the matrix ‘‘folia-
tion’’, and the host becomes inhomogeneous; however, homoge-
neity is imposed as a useful approximation.

Further, the homogeneous host solution is appropriate when
estimating the bulk behavior of a dispersion of rigid or deformable
clasts embedded in an isotropic matrix by self-consistent averaging
(Treagus and Treagus, 2001; Treagus, 2002; Fletcher, 2004). The
bulk anisotropy is associated with clast alignment and aspect ratio,
and need not be predominantly due to an intrinsic anisotropy of the
matrix. Inhomogeneous deformation in the host, to which is
attributed the bulk properties of the composite material, does not
then affect its homogeneity. Mathematical treatment of the finite
deformation of elliptical cylindrical inclusions has been extensively
studied (e.g., Bilby and Kolbuszewski, 1977; Mulchrone and Walsh,
2006; Mulchrone, 2007). Here, I present simple relations that
facilitate computation, and provide a few illustrations.

Consider an elliptical inclusion with semi-axes of length
a parallel to the x-axis and b parallel to the y-axis. Let the positive x-
axis lie at an angle f to a reference axis, x, where this may be taken
parallel to bedding or to a shear zone (Fig. 1). Considering the
change in principal axes and orientation of this ellipse after an
infinitesimal time dt, we obtain:

1
a

da
dt
¼ Dxx

*

1
b

db
dt
¼ D*

yy

df

dt
¼ u* þ

 
a2 þ b2

a2 � b2

!
D*

xy

(16)

The procedure used to obtain this result is to update the
components of the displacement gradient tensor (Fij), referred to
axes x; y, and assigned current values Fxxð0Þ ¼ Fyyð0Þ ¼ 1; Fxyð0Þ ¼
Fyxð0Þ ¼ 0 using the components ðVij ¼ vvi=vxjÞ of the velocity
gradient tensor obtained from (14) and (15). The new, infinitesimally
different orientation and aspect ratio of the inclusion are then found.
The quantities D*

xx;D
*
xy;u

* in (16) are given by (14) and (15), with
D*

yy ¼ �D*
xx. Relations (16) are general for a homogeneous defor-

mation, however these quantities are determined. As Bilby and
Kolbuszewski (1977) note, the homogeneous elliptical inclusion
might have another rheological behavior – e.g., nonlinear power-law
behavior – than the viscous behavior considered here and a solution
for such a case can generally be found because the stress, rate of
deformation and vorticity within the inclusion will remain homo-
geneous. Bilby and Kolbuszewski (1977) and Mulchrone and Walsh
(2006), among others, have established relationships equivalent to
(16), and the former authors give a more general result for an
ellipsoid.
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4. Rotation of a rigid inclusion

For the rigid inclusion, (14) reduces to:

u* ¼ uo þ
 

a2 � b2

a2 þ b2

!�
� Dxx sin 2fþ Dxy cos 2f

�
(17)

where the term in the second parentheses is ½ the engineering rate
of shear on the plane parallel to the long axis of the inclusion. This
result is also precisely that for the isotropic case. An independent
check on (17) has been obtained through both a numerical solution
and an analytical solution for the incompressible case obtained by
a different method (M. Dabrowski, personal communication, 2007).
In view of the variety of results already presented for the rotation of
the rigid elliptical inclusion in an isotropic viscous medium (e.g.,
Ghosh and Ramberg, 1976), none are given here.
5. Inviscid and incompressible inclusion

The case of an inviscid and incompressible inclusion provides, in
the limit of infinite aspect ratio, a solution for a ‘‘flanking structure’’
(Passchier, 2001; Grasemann and Stuwe, 2001; Grasemann et al.,
2003; Exner et al., 2004; Kocher and Mancktelow, 2005, 2006;
Mulchrone, 2007). Flanking structures might also be modeled by
choosing a finite viscosity for the inclusion, or, in view of the
possibility of choosing arbitrary rheological behavior for the
inclusion, treat the case in which slip requires a fixed ratio of shear
stress to normal stress (Marcin Dabrowski, personal communica-
tion, 2007).

If the velocity matching conditions are written in a form
obtained prior to the algebraic reduction that yields the general set
(10), the vanishing of the deviatoric stress in an inviscid inclusion
then results in simpler relations. These reduce to two pairs of
equations. One pair takes the form:

b
a

b11ðb1 þ b2Þs*
xx þ D*

xx ¼
b
a

b11ðb1 þ b2Þso
xx þ 2b11so

xx þ b16so
xy

a
b

b11ðb1 þ b2Þs*
yy þ D*

yy ¼
a
b

b11ðb1 þ b2Þso
yy � 2b11so

xx � b16so
xy

(18)

Here, we do not expand the inclusion rates of deformation using
(8). Instead, we note that the deviatoric stress in it vanishes, so that:

s*
xx ¼ s*

yy ¼ s* (19)

Further, incompressibility requires that the normal components of
the rate of deformation be equal in magnitude and opposite in sign.
Thus, after substitution, (18) immediately yields:

D*
xx ¼

� ffiffiffiffi
m
p

v

��
Dxx cos 2fþ Dxy

m sin 2f
�
þ
�
Dxx cos 2fþDxy sin 2f

�
s* ¼ so �

�
a2�b2

a2þb2

�
so

xx

(20)

From the remaining two velocity conditions we obtain, in like
manner:

D*
xy ¼

�
v
ffiffiffiffiffi
m
p ��

� Dxx sin 2fþ Dxy

m cos 2f
�
þ
�
� Dxx sin 2f

þDxy cos 2f
�

u* ¼ uo þ
ffiffiffiffiffi
m
p �

b
a
� a

b

��
� Dxx sin 2fþ Dxy

m
cos 2f

�
(21)
In the relations for the rates of deformation, the second terms are
the far-field values in inclusion coordinates.

An expression for the relative motion of the two sides, of a thin
inviscid elliptical inclusion may be derived. Given that the velocity
field within the inclusion is:

v*
x ¼ D*

xxxþ
�

D*
xy � u*

�
y

v*
y ¼

�
D*

xy þ u*
�

xþ D*
yyy

(22)

Then, the relative motion is:

Dv*
x ¼ v*

xð0; bÞ � v*
xð0;�bÞ ¼ 2

�
D*

xy � u*
�

b (23)

which is, from (21):

Dv*
x ¼ 2a

ffiffiffiffiffi
m
p �

� Dxx sin 2fþ Dxy

m cos 2f
�

þ2b
��
� Dxx sin 2fþ Dxy cos 2f

�
� uo�

y2a
ffiffiffiffiffi
m
p �

� Dxx sin 2fþ Dxy

m
cos 2f

�
;
a
b

[1 (24)

If this quantity is positive, the slip is dextral, if it is negative, slip
is sinistral. The term in parentheses in the 2nd line of (24) is
proportional to the far-field shear stress in the medium.
6. Deformable isotropic inclusion in an anisotropic medium
in finite foliation-parallel shear

An example that is likely to find application in the interpretation
of natural structures is that of an isotropic inclusion embedded in
a medium undergoing homogeneous simple shear in the plane of
its foliation. For foliation oblique to the shear plane, the deforma-
tion is more complex, and is described by the evolution of three
quantities, the axial ratio, a/b, the orientation of the long axis to the
shear plane, f, and the angle of the foliation to the shear plane,
which is here taken to be fixed at zero. Numerical integration of
(16) provides the trajectories of a, or a/b, and f with time. Alter-
natively, we may consider the trajectory of a point in f, a/b – phase
space as done by Bilby and Kolbuszewski (1977) and Mulchrone
and Walsh (2005, Fig. 8). An example of a phase-space plot is given
in Fig. 2.

Here, the behavior of the inclusion will generally depend on
three viscosities, that of the isotropic inclusion, h*, and the two
principal viscosities of the host, hn and hs. When both host and
inclusion are isotropic viscous fluids, with m¼ 1, the rheological
behavior depends on the single ratio, R¼ h*/h, where h is the
isotropic host viscosity. Three classes of behavior are identified as
functions of R (Bilby and Kolbuszewski, 1977; Mulchrone and
Walsh, 2006). (i) When R< 2, inclusions with any initial values of
orientation to the shear plane f, and aspect ratio a/b, will, with
sufficient shear strain, have their long axes approach the shear
plane and their aspect ratios / N. (ii) When 2< R< R1, a stationary
point is present in f, a/b – phase space at f¼ 0 and
ða=bÞC ¼ R=ðR� 2Þ. An inclusion with these initial parameters will
retain them in the shearing flow. Trajectories giving the evolution
of inclusion orientation and aspect ratio in phase space will be
closed loops within some region around this stationary point, and
any inclusion whose initial values lie in this region will undergo
periodic oscillatory motion in its aspect ratio and long axis orien-
tation. Outside of this region, inclusions are again drawn out
without limit and have their long axes approach the shear plane.
The lower boundary between these two classes of behavior is given
by the condition that ða=bÞC just achieve a positive, if infinite, value
– i.e., R¼ 2. (iii) When R > R1y3:40 (see Bilby and Kolbuszewski,
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Fig. 2. Representative trajectories of an isotropic elliptical inclusion in f, a/b – phase
space. See text for further discussion.
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1977), all initial values of f and a/b give rise to periodic motions,
which are either oscillatory, for initial values near the stationary
point, or rotational otherwise (see Fig. 2).

For the isotropic inclusion in an anisotropic host, m> 1, the
limiting values of R that define the three classes of behavior are
different from those in the isotropic host case, with a further
dependence on m. We find ða=bÞC from the condition that df/dt¼ 0
at f¼ 0. Using the results given, we obtain:

�a
b

�
C
¼

ffiffiffiffiffi
m
p �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RðmR� 2Þ

p �
mR� 2

(25)

Since mR¼ h*/hs, the condition for the boundary between classes (i)
and (ii) in simple shear parallel to the foliation is independent of
the viscosity in foliation-parallel extension or shortening, hn. It is
just mR¼ 2. Thus, even for R ¼ h*=hn < 1, inclusions may undergo
periodic motions in f, a/b – space. Here, it is the viscosity in shear
that is pertinent. The result (25) is reasonably well-approximated,
at least for m not too large, by the empirical fit:

�a
b

�
C

y
m3=4R

m3=4R� 2
(26)

where m3=4R ¼ h*=ðhnh3
s Þ

1=4. This relationship indicates that the
dependence on hn is relatively small. Of course, the proper condi-
tion on the position of the boundary between (i) and (ii) has no
dependence on hn.

The boundary between classes of behavior (ii) and (iii) was
obtained empirically, by judging between initial inclusion trajec-
tories that showed periodicity and those that did not, for a fixed
value of m and increasing R. Using values of R1 obtained for1 -
�m� 10, and requiring that R1(1)¼ 3.40, we obtained the fit:

mNR1y3:40
N ¼ 0:786y0:8

(27)

This result again indicates a relative insensitivity to hn.
In pure shear parallel to the foliation, we might well expect

a reversal of roles, with hn dominant, and hs playing only a modest
role in the behavior. This intuition can be verified by using the
relations defining the rates of change in aspect ratio and orientation
with Dxxs0;Dxy ¼ 0. Evidently, a more complicated behavior will
be manifested in ‘‘transpression’’ or ‘‘transtension,’’ or in the more
general histories of non-constant far-field deformation – i.e., local
bulk deformation – that generally apply in natural deformations.

Fig. 2 shows several trajectories for the case m¼ 3, R¼ 2. In
positive, or dextral-, shear, all points describing inclusion behavior
move in a counterclockwise sense, on the trajectories. The position
of the stationary point is within the smallest trajectory on the f¼ 0
axis. Closed trajectories surrounding this point correspond to
periodic, oscillating behavior. The long axis swings between its
maximum and minimum values, but is never outside of the range
from þ45� and �45� from the shear plane. The non-closed trajec-
tories are periodic, with full rotation.
7. Conclusions

A solution for the deformation of an anisotropic viscous inclu-
sion in a homogeneous incompressible anisotropic viscous fluid,
with welded host/inclusion interface has been presented. In
application to rigid inclusions, it is shown that the rate of rotation is
independent of the anisotropy and identical to that for a rigid
inclusion in an isotropic viscous medium. A special solution is
derived for an inviscid incompressible inclusion and it is applied to
determine the sense and rate of ‘‘slip’’ across a thin, very weak
inclusion, such as is implicated in the formation of flanking struc-
tures. Results obtained for finite deformation in simple shear with
an isotropic host are extended to the case of an anisotropic viscous
host to provide an approximation to the behavior in which the
deformation disrupts its homogeneity.
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